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Analytic results for the scaling behaviour of a piecewise-linear 
map of the circle 
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Abstract. For the piecewise-linear circle map @ + 8’. with e’= 6 + R - K (f - 1 O(mod 1) -$I) 
the parameter values R ,  at which a periodic orbit, starting at 0 = 0 with winding number 
F,/ F,,, , where F, is the ith Fibonacci number, exists, are calculated analytically. These 
calculations are done at two K values, K = 1, the critical case, and at K = K < 1 (where 
In(1- K)/ ln( l+ K )  = -(1 +JS)/2). At K = K the usual scaling behaviour for a smooth 
subcritical map is found, i.e. the same S as Shenker found numerically. However, at K = 1 
a different critical S value than is usually found numerically for smooth maps is calculated 
analytically for this piecewise-linear map. 

1. Introduction 

Recently much work has been done on smooth circle maps. It was mainly stimulated 
by the fact that in circle maps the transition from ‘rotation-like’ behaviour to ‘chaotic’ 
behaviour is an analogue (Feigenbaum et a! 1982) of a particular route to chaos: 
quasi-periodic behaviour followed by broadband noise. This scenario is often observed 
in experiments (Swinney and Gollub 1978). 

I study the piecewise-linear circle map 8’ = Toe, with 

T :  e ’=  e +n - m ( e )  (1) 
0 s  e< ( a  - l ) /a  
( a  - l ) / a s  e< 1 

D( 0)  = 

a > l  e= 8 modulo 1 o s  e< 1 

as plotted in figure 1. The cusp is located at e= ( a  - l ) / a  Note that To( e + 1) = TOO + 1 
and Toelmod is a map on the circle. An orbit is a sequence of subsequent 6 values, 
8, To@, TZ08,. . . , generated by the mapping. 

This paper is confined to orbits starting at 6 = 0. The orbit has (rational) winding 
number p = F / G  if 

TGoO = F. (3) 
Actually I wish to find orbits with irrational winding number p, equal to the golden 

mean WE= (45 - 1)/2, cf Shenker (1982). This is done by approximations with the 
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Figure 1. The piecewise-linear mapping T, from (l) ,  plotted as a function of 0, at ( a )  
K = 1.0 and ( b )  K < 1.0. R is a parameter in equation (1). 

rationals 

w = FIIF,,, (4) 

where F, is the ith Fibonacci number ( Fo= 0, Fl = 1,  F,,, 5 F, + Fl-l). These W, yield 
the best rational approximants to W, (Shenker 1982, Niven 1956). The main technical 
problem is to calculate the parameter values R , (K) ,  for ( l ) ,  at which orbits with p = W, 
exist. 

A derived quantity of importance is the rate 6 at which the R , (K)  converge, and 
its approximation 

& ( K )  = [ f i , - l (K) - a ( K ) l l [ n , ( K )  -fl1+1(K)I. ( 5 )  

Shenker (1982) numerically calculated 6, and SZ, for two smooth circle maps. I obtain 
these quantities analytically for the piecewise-linear map (1) at two K values. 

The circle maps studied here and in Shenker (1982) have a critical K value, K = 1, 
at which there is a transition to chaotic behaviour, similar to the transition to broadband 
noise in the scenario described above. In the subcritical case ( K  < 1) these analytical 
results agree with Shenker’s (1982) numerical value, 6 = -2.6180 , . . . 

Ostlund et al (1983) point out that 

6 = - w;2 

for an analytic diffeomorphism; this also holds for this non-analytic map. In the critical 
case my analytical result is different from Shenker’s result, apparently due to the 
existence of a finite region of slope 0 (see figure l (a ) ) .  

In 9 2 the method for recursively obtaining the R,(K) values is described. In 9 9  3 
and 4 the R I  and 6, are calculated for K = 1 and K = K, where K is the solution of 

ln(1 - K ) / l n ( l + K ) = - - ( l + J 5 ) / 2 .  (6) 
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2. A recursive method to calculate ni(K) 

The problem is to calculate the values 0 ,  such that 

TkFk+lo0 = Fk (7) 

where Tk denotes the map T (as defined in (1)) with the parameter value 0 = a k .  

I shall obtain a recursion relation for those Ok, 

nk = f i k ( a k - l ,  o k - 2 ) .  (8) 

Use will be made of the fact that TJOO and Tii-,'oO are both in the same unit interval, 
e.g. [ n ,  n + 13, n E N, and on the same side of the cusp in D( e), for all j with j < Fi. 
A proof follows later in this section. 

From this result it follows that T:oO and Ti-,'oO are virtually the same; when j S Fi 
they merely differ in their SZ values. Hence 

~ i j ~ o -  ~ - l j ~ O =  B ( j ) ( O i - a i - , )  (9) 

where B ( j )  is some proportionality constant to be calculated in 9 0  3 and 4, which is 
not dependent on the SZ. Similarly T,-,'oO and Ti-2Jo0 are in the same interval, for all 
j with j < Fl-l. Adding equation (9) to itself, at one lower i value, then yields 

T,',O- Ti-:oO = B(  j)[SZ, - (10) 

for j < Fi-l. Assuming equation (7) holds at k = i - 1 and i - 2, I derive a recursion 
relation for the SZ (8) such that (7) also holds at k = i. For k = i, equation (7) can be 
written as 

T , F z + ~ o O =  TiFr-~oT,F<oO= F, (11) 

TFlOO = B( F , ) [ n i  - ai-13 + Fi-l Oi + F,-l (12) 

since F , + , = F i + F , - , .  Combining (9) and (7) at k =  i - 1  yields 

where I define a new quantity ai. 
As a result the second term of (1 1)  becomes 

T , F ~ - l o T , ~ o O  = T , ' I - ~ ~ ( @ ~  + F,- , )  = TiFj-loQi + Fi-, (13) 

due to the modulo counting in D ( e ) ,  cf (2). Later in this section I prove that ai is 
so small that TJ0Qi will be in the same unit interval as T,JoO, and on the same side of 
the cusp in D( e )  (2), for all j with j < 

T,Fi-loQi = T,'1-1~0+ C(Fi-])ai (14) 
where C(F, - , )  is the product of the slopes in figure 1 each time T has been applied. 
Substitution of (14) and (lo),  at j =  Fi-, ,  into (13) finally yields 

T,F1-loTIF@= B(F;-I)(O# -ai-*)+ C(Fi-] )Oi+Fi .  (15) 

Hence 

Comparison with (1 1)  shows that 

B ( F , - , ) ( a  - f i t - * )  + C ( ~ , - 1 ) ~ ( ~ , ) ( ~ 1  -a,-,) = 0 

using the a, definition (12). 
Introducing some new notation, 

B,-, = B ( F l )  A, =RIB, 
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equation (16) can be written as 

[B1-2+ C(Fl-I)Bl-llfll =Al -2+  C ( F , - I ) A ~ - I  

Hence I obtain for 0, 

R , ( = A , / B , )  = [ A , - , +  C ( F , - i ) A , - , ] / [ B i - z +  C(F~-I)B~-II* (18) 

This equation still has two unknowns: A, and B, ,  From (9) a second equation can be 
derived which gives a recursion relation for B,. Using (9) at various i and j values, 
and also using ( 7 )  and (14), it is straightforward to derive 

(19) B,(R,+, -a11 = B,-2(f13+1 -az) + C ( ~ l - l ) ~ z - l ( f L + l  -at) 
and since 

a,+, f a, 
(19) can be written as 

Bi = Bi-2+ C ( F i - l ) B i - l  

and, with (18), one finds 

A , = A , - 2 + C ( F , - , ) A , - 1 .  (20b)  

In 00 3 and 4 I calculate expressions for Cl,  (36) and (41) and ai (37) and (50) with 
the recursion relations (20). 

Several technical proofs postponed from earlier in this section are provided now. 

Result 1. T,-:oO and TlJOO are in the same unit interval [ n ,  n + 11, n E N, with j < F,+,. 

Pro05 It is proved by Kandanoff (1983) that the quantity 

r , , ( e ) ~ r ~ l Q o ~ - ~ - ~ ~ / [ ~ ~ - ~ ~  (21) 

is greater than zero for all P, Q( E N )  and 8 for which the denominator does not 
vanish, i.e. P/  Q # W,. 

The main idea of this proof is that under these conditions the numerator cannot 
vanish either since all orbits of T, have winding number W,. The numerator would 
vanish only if P / Q  = FJ  F,+, , which was excluded. In addition, note that rp,Q( e )  is 
periodic in 8 and continuous. Hence it will be positive for all 8 when it is positive 
for one e. Also it is easily seen from (21) that r N P , N Q ( e ) +  1 if N + q  due to 
limN,,[( T,NQoe)/(NQW, + e ) ]  = 1. So I'p,Q(0) will always be positive (Kadanoff 
1983). Hence T,',O is in the same interval as jF , /  F,,, . 

To show that jF , /F ,+ ,  and j F , - ] /  F, are in the same unit interval for j < F,,, I will 
look for the first time that this is not the case. (Here I assume i is even, proof for i 
odd is analogous.) I need the smallest integers n, j such that 

jF , /F ,+ ,  < n < j F , - , / F , .  (22) 
This can be rewritten, using F,-,F,,,  = F?+ 1, as 

0 < nF,,, - jF, < j /  F,. (23) 
The second term is an integer. When it takes the value 1, it can be rewritten, using 
F,-,F,+, = E2+ 1, as ( n  - Fl-l)Fl+l  = ( j - F , ) F , .  Because the Fibonacci numbers have 
no non-trivial common factors this is only satisfied for n = F#-, + mF,, j = F, + mF,+l ,  
where m is an integer. The smallest m for which (23) holds is m = 1, so n = F,+, , j = F,+2. 
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When the second term in (23)  takes the value two, it can be rewritten, using 
Fl-3F,+1 = F,-,F, + 2 ,  as ( n  - Fl-3)Fl+1 = ( j -  Fl-2)Fl. For the same reason as above, 
this is only satisfied for n = F,-,+ mF,, j = F,-,+ mF,+, .  Now as the smallest m for 
which (23 )  holds is m = 2, this gives greater values for n and j than in the first case. 

When the second term 2 3 , J  has to be greater than 3F,  but this is greater than E + , .  
So n = F,+, and J = F,,, is the first occurrence. 

Result 2. T,.',O and T,-,',O are on the same side of the cusp in D( e )  (2), for j < Fi+, . 

Boo$ First treat the critical case K = 1 .  
With j < Fi+,, it is impossible that points T/,O lie in the flat regions of figure 1( a )  

( O S  g~ ( a  - l ) /a ) ,  for if this happened, there would be a cycle of length j instead of 
F,,, and another winding number would ause (Kadanoff 1983). So all points T,',O lie 
in the regions ( a  - l ) / a  < e< 1 .  

In the subcritical K region ( O S  K < l ) ,  I confine myself to a special value of K ,  
K = K ( 6 )  to be determined later, such that 

T,',j.= 1 a = 2 .  (24 )  

The statement that has to be proved can now be written as: for all j < Fi+, , there is 
an n such that 

As intermediate steps I need 

n + T,-',o s T,',o s n + 1 + T,-',o 

and 

n + T,-,-',o s T,-,',o s n + 1 + T,-,-',o. 

The fact that there is an n, for a l l j  < F,,, , such that (25c )  and ( 2 5 d )  both hold, follows 
from the fact that T'+',O and T,_,'+',O are in the same interval [ n, n + 1 1  for j < Fa+* - 1 
(see result 1 ) .  

I will now prove the equivalence between (25b)  and ( 2 5 d )  for i even; the proof 
for i odd and for the equivalence of ( 2 5 a )  and (25c )  is analogous. For i=even, 
a,< (since W, < W,-, and W is a monotonic function of fl (Shenker 1982)), so 
T,-,-',< -4. For the equivalence to hold there should not be any points T,-<oO in the 
regions not common to both (25b)  and ( 2 5 d ) ;  there should be no point T,-,',O such that 

n +  T , - , - ' ~ O <  T,-,',O<n-f. (26) 

Applying T,-, on all three terms and using ( 1 )  and (24 )  this is equivalent to 

n <  T,-IJ+'oO<n+ T,-,,-j= n+n,-,-n,. (27 )  
So there is a forbidden interval for T_,'+',O. Now I will show that two points 
T,-lJOO1mod , that are nearest neighbours on the unit interval, will lie on different sides 
of the forbidden interval, so no point lies in it and the equivalence will be proven. 
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For j = F, - 1, Tf-ll+lOO1modl takes the value 0, so it is on the left-hand border of 
the forbidden interval. The points ~ - ~ o o l ~ , , d l  fall on the unit interval in exactly the 
same order as the points jW,-,lmodl (from (21), Kadanoff (1983)). On the unit interval 
the next point after j = F, - 1 will be the one from j = - 1, because 

(Fr-1 - 1) W - l l m o d  1 - (Ft - 1 ) W - l l m o d  1 = 6.  
F o r j  = F ~ - ~  - 1, Tf-(+lOO1modI = ~ , - , ~ i - ~ ~ 0 1 ~ ~ ~ ~  = T , - , ~ I - ~ ~ O -  Thelast equality 
follows from R,-,>fl ,- , ,  so the final term >0, and the final term is less than 1 from 
result 1. Now it has to be proved that 

T , - , ~ ~ - ~ ~ O -  T ~ - ~ ~ ~ - I ~ ~ >  R ~ - ~  -a, (28)  

for the point to lie to the right of the forbidden interval. 

T,-l’,O- TI-;,02Rt-l - C l , - 2  

From the mapping (1) it is clear that 

for all j > O ,  so also for j = F,-, ,  and -R,-2>R,-1-Rm. Hence (28) is satisfied. 
So there always is an n for all j, such that (25b) and (25d) both hold. The same 

is true for (25a) and (25c). Furthermore, (25c) and (25d) are equivalent f o r j <  F,,,. 

Result 3. The angle Qz,  as defined in (12), is so small that T,’,@, will be in the same 
interval as T,’,O, and on the same side of the cusp in D( e), as long as j < FI-l. 

Pi-ooj Results 1 and 2 state that T,’,O and T,-,’,O are in the same interval and on the 
same side of the cusp f o r j  < F,,, . This holds also for TtFl+’,O and T,-,F~+’oO for j < F,-, . 
T,-lF~c’oO can be written as T,-,’,O+ F,-l .  So 7’,F,+JoO- Fl-l and T,-,’,O are in the same 
interval and on the same side of the cusp for j <  F , - , ,  and so are T,_l’oO and TJOO. 
From (12) it follows that 

T,F~+’,O- F,-l = T,’,Q,. (30) 
This completes the proof. 

3. Analytical expressions for ai and 15~ for the critical case ( K  = 1) 

In this section the recursion relations for R ,  (8) and the 6, (5) are calculated at K = 1. 
It is easy to calculate the first few R I  : 

i = 0: Toloo = R, = o 
i = l :  T , ’ ~ O = R , = ~  whence R I  = 1 (3 1 b )  
i = 2: T ~ ~ ~ o  = T,’,c~, = (1 + a)a2 + 1 - a = 1 

whence Cl, = 0 (31a) 

whence R, = a / ( a  + 1). (31c) 

When i is even the subsequent Cl ,  are found from the recursion relations (20) and 
(31). The only unknown quantity is C(F,-l), which is the product of the slopes in 
figure 1 each time T has been applied. The map T has been applied F,-,  times with 
slope a each time, cf figure l ( a )  and (1) and (2). Therefore 

C(F,- , )  = aF’- ‘ .  (32) 

When i is odd equation (20) cannot be used. This is a result of the fact that CP,, as 
defined in (12), is larger than (a- l ) /a ,  because Q, is greater than zero and it is 
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impossible for these points to lie in the flat regions, as discussed in 0 2. As a result, 
the C(F,- , )  in equation (14) should be multiplied by 0, - ( a - l ) / a  instead of @,. 
This problem can be avoided by reordering (11): 

T,Fz+loO= T,F~oT,F~-loO= F,. (33 )  

A, = Az-l + C(F,)A,-, ( 3 4 a )  

B, = B,-,+ C(F,)B,-, .  ( 3 4 b )  

C ( F , )  = aFc (35 )  

The recursion relation, analogous to (20),  but obtained with (33 ) ,  is 

Since T has been applied F, times and the slope is a each time 

is the analogue of (32). 
In the critical case the R I  can therefore be expressed as 

a, = A,/B, Ao=O 

A l = l  

A, = U'~-IA,_, + A,-* I :  even 

& I  + aF1A,-, i :  odd 

Bo= 1 

B1 = 1 

B, = u'-IB,-, + Bl-2 i :  even 

B,-l + U'B,-~ i :  odd. ( 3 6 b )  

Finally, having obtained these exact values for R I  it is easy to calculate 6, (5): 
6, = - ( a F > + 2 -  1)/(a'z+2-aFz+l) 

-(aF1+z- l)/(aFg - 1) 

i: even 

i :  odd. 

Hence, for i + CO 

lim 6, = -1 

lim 6, = -CC 

i :  even 

i :  odd. 

,-CC 

1-m 

(37 )  

(38 )  

4. Analytical expressions for Qi and Si in the subcritical case with K = ~ ( < 1 )  

In this section I calculate the R i  and ai at K = ~ ( 6 )  and a = 2 .  As has already been 
pointed out in (24 ) ,  I study the case where 

TCClOi = 1 a = 2 .  

It appears later in this section that this condition is satisfied if and only if K = K where 
K satisfies ( 6 ) .  
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As in the critical case is it easy to calculate the first few R, : 

i = 0: ~ ~ ' ~ 0  = R, = O (39a) 

i = l :  Tl'oO=Rl=l  whence .RI = 1 (39b) 

i = 2: T;oo = (2 f K ) 0 2  - K = 1 (39c) 

whence no = 0 

whence n2 = (1 + ~ ) / ( 2 +  K ) .  

Again (20) can be used to calculate the a,. The only problem is to calculate C(F1-'). 
When TI is applied Fl-l times to the starting point, 8 = 0, the orbit has FI-3 points 

in thg intervals [ n, n +f ]  and Ft-2 points in the intervals [ n +:, n + 13, n E N. This is 
a result of the uniform distribution of the points in the pure rotation case, and the 
ordering properties following from (21). The real starting point for the 7 ' , F l - ~  lies in 
the second interval when 8 < 0 ( i  is even) and in the first interval when 8 > 0 ( i  is 
odd), cf (12). The last (F,-,th) point, which has no influence on C(FI-]), is in the 
first interval when i is even and in the second interval when i odd, as a result of the 
fact that jFI/F,+, for j = Fl-l, equals Fl-lF,/Fl+l = E-2+(-1)1/F1+1. This lies in the 
interval [ n, n +:I if i is even, and in [ n + f, n + 11 if i is odd. As a result 

C( Fi-l) = ( 1  - ~ ) ~ , - 3 - ' (  1 + K ) ? - Z + '  

( 1  - ~ ) s - 3 + ' (  1 + ~ ) $ - 2 - '  

i :  even 

i :  odd. 

In the subcritical case the ai can therefore be expressed as 

R i  = Ai/ Bi Ao=O 

AI = 1 

A , = ~ + K  

Ai = Ai-2+ ( 1  - ~)~ t -3* ' (1  + K ) $ - 2 * - '  Ai-1 (41a) 

Bo= 1 

BI = 1 

B , = ~ + K  

B~ = B ~ - ~ +  ( 1  - K)F1-3*1(i + K ) F t - - 2 * - 1 ~ i - l  (41b) 
( i  is odd: upper sign, i is even: lower sign). 

One easily proves that the mapping has a winding number which is independent 
of the starting points (Kadanoff 1983). Therefore the distance between two 8 points 
must remain finite. This distance is multiplied by C (  Fi- ' )  after FiPl mappings. Hence, 
I require 

lim i-m c ( F ~ - ' )  = l i m ( l - ~ ) ~ ~ - 3 * ' ( 1 + ~ ) ~ ~ - 2 * - ~ =  i+m L<CO. (42) 

lim(Fi.-3* i-rm 1 )  ln(1- K )  = lim[ln(L) i-m - (F i -2*  -1) ln ( l+  K ) ] .  (43) 

This yields, taking the natural logarithm, 

When dividing both sides in (43) by Fi-3*l  and taking i + q  the first term on the 
right-hand side will vanish. Note that 

(44) lim i-m (Fi-2* -l)/(Fi-3 rt 1) = ( 1  +J5)/2.  
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Hence, from (41b) ,  for i -$ a: 

i + 00: B, = B,-,+ ( 1  - K ) * ' (  1 + K ) * - ' B , - ~ .  

Thus 

i +CO: B,/B,-, = ( 1  - ~ ) * ' ( 1 +  ~ ) * - ' ( l  + J 5 ) / 2 .  

Finally, 

S,=lim -B i+1 /B , - l= - (3+J5) /2 .  
i- tm 
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