Analytic results for the scaling behaviour of a piecewise-linear map of the circle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 192973
(http://iopscience.iop.org/0305-4470/19/15/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:22

Please note that terms and conditions apply.

Analytic results for the scaling behaviour of a piecewise-linear map of the circle

Jacob Wilbrink \dagger
Twente University of Technology, Center for Theoretical Physics, PO Box 217, 7500 AE Enschede, The Netherlands

Received 17 July 1985, in final form 11 February 1986

Abstract

For the piecewise-linear circle map $\theta \rightarrow \theta^{\prime}$, with $\theta^{\prime} \equiv \theta+\Omega-K\left(\frac{1}{2}-\left|\theta(\bmod 1)-\frac{1}{2}\right|\right)$ the parameter values Ω_{i} at which a periodic orbit, starting at $\theta=0$ with winding number F_{i} / F_{i+1}, where F_{i} is the i th Fibonacci number, exists, are calculated analytically. These calculations are done at two K values, $K=1$, the critical case, and at $K=\kappa<1$ (where $\ln (1-\kappa) / \ln (1+\kappa)=-(1+\sqrt{ } 5) / 2)$. At $K=\kappa$ the usual scaling behaviour for a smooth subcritical map is found, i.e. the same δ as Shenker found numerically. However, at $K=1$ a different critical δ value than is usually found numerically for smooth maps is calculated analytically for this piecewise-linear map.

1. Introduction

Recently much work has been done on smooth circle maps. It was mainly stimulated by the fact that in circle maps the transition from 'rotation-like' behaviour to 'chaotic' behaviour is an analogue (Feigenbaum et al 1982) of a particular route to chaos: quasi-periodic behaviour followed by broadband noise. This scenario is often observed in experiments (Swinney and Gollub 1978).

I study the piecewise-linear circle map $\theta^{\prime}=T_{0} \theta$, with

$$
\begin{align*}
& T: \theta^{\prime}=\theta+\Omega-K D(\theta) \tag{1}\\
& D(\theta) \equiv \begin{cases}\bar{\theta} & 0 \leqslant \bar{\theta}<(a-1) / a \\
(a-1)(1-\bar{\theta}) & (a-1) / a \leqslant \bar{\theta}<1\end{cases} \tag{2}\\
& a>1 \quad \bar{\theta} \equiv \theta \text { modulo } 1 \quad 0 \leqslant \bar{\theta}<1
\end{align*}
$$

as plotted in figure 1. The cusp is located at $\bar{\theta}=(a-1) / a$. Note that $T_{0}(\theta+1)=T_{0} \theta+1$ and $\left.T_{0} \theta\right|_{\bmod 1}$ is a map on the circle. An orbit is a sequence of subsequent θ values, $\theta, T_{0} \theta, T^{2}{ }_{0} \theta, \ldots$, generated by the mapping.

This paper is confined to orbits starting at $\theta=0$. The orbit has (rational) winding number $\rho=F / G$ if

$$
\begin{equation*}
T_{0}^{G} 0=F \tag{3}
\end{equation*}
$$

Actually I wish to find orbits with irrational winding number ρ, equal to the golden mean $W_{\infty} \equiv(\sqrt{ } 5-1) / 2$, cf Shenker (1982). This is done by approximations with the

[^0]

Figure 1. The piecewise-linear mapping T, from (1), plotted as a function of θ, at (a) $K=1.0$ and (b) $K<1.0 . \Omega$ is a parameter in equation (1).
rationals

$$
\begin{equation*}
W_{i} \equiv F_{i} / F_{i+1} \tag{4}
\end{equation*}
$$

where F_{i} is the i th Fibonacci number ($F_{0} \equiv 0, F_{1}=1, F_{i+1} \equiv F_{i}+F_{i-1}$). These W_{i} yield the best rational approximants to W_{∞} (Shenker 1982, Niven 1956). The main technical problem is to calculate the parameter values $\Omega_{i}(K)$, for (1), at which orbits with $\rho=W_{i}$ exist.

A derived quantity of importance is the rate δ at which the $\Omega_{i}(K)$ converge, and its approximation

$$
\begin{equation*}
\delta_{i}(K) \equiv\left[\Omega_{i-1}(K)-\Omega_{i}(K)\right] /\left[\Omega_{i}(K)-\Omega_{i+1}(K)\right] \tag{5}
\end{equation*}
$$

Shenker (1982) numerically calculated δ_{i} and Ω_{i} for two smooth circle maps. I obtain these quantities analytically for the piecewise-linear map (1) at two K values.

The circle maps studied here and in Shenker (1982) have a critical K value, $K=1$, at which there is a transition to chaotic behaviour, similar to the transition to broadband noise in the scenario described above. In the subcritical case ($K<1$) these analytical results agree with Shenker's (1982) numerical value, $\delta=-2.6180 \ldots$

Ostlund et al (1983) point out that

$$
\delta=-W_{\infty}^{-2}
$$

for an analytic diffeomorphism; this also holds for this non-analytic map. In the critical case my analytical result is different from Shenker's result, apparently due to the existence of a finite region of slope 0 (see figure $1(a)$).

In § 2 the method for recursively obtaining the $\Omega_{i}(K)$ values is described. In $\S \S 3$ and 4 the Ω_{i} and δ_{i} are calculated for $K=1$ and $K=\kappa$, where κ is the solution of

$$
\begin{equation*}
\ln (1-\kappa) / \ln (1+\kappa)=-(1+\sqrt{ } 5) / 2 \tag{6}
\end{equation*}
$$

2. A recursive method to calculate $\Omega_{i}(K)$

The problem is to calculate the values Ω_{k} such that

$$
\begin{equation*}
T_{k}{ }^{F_{k+1}{ }_{0} 0}=F_{k} \tag{7}
\end{equation*}
$$

where T_{k} denotes the map T (as defined in (1)) with the parameter value $\Omega=\Omega_{k}$.
I shall obtain a recursion relation for those Ω_{k},

$$
\begin{equation*}
\Omega_{k}=\Omega_{k}\left(\Omega_{k-1}, \Omega_{k-2}\right) \tag{8}
\end{equation*}
$$

Use will be made of the fact that $T_{i}^{j} 0$ and $T_{i-1}{ }_{0}{ }_{0} 0$ are both in the same unit interval, e.g. [$n, n+1$], $n \in N$, and on the same side of the cusp in $D(\theta)$, for all j with $j<F_{i}$. A proof follows later in this section.

From this result it follows that $T_{i 0}^{j} 0$ and $T_{i-1}{ }_{0}^{j} 0$ are virtually the same; when $j \leqslant F_{i}$ they merely differ in their Ω values. Hence

$$
\begin{equation*}
T_{i 0}^{j} 0-T_{i-1}{ }_{0}^{j} 0=B(j)\left(\Omega_{i}-\Omega_{i-1}\right) \tag{9}
\end{equation*}
$$

where $B(j)$ is some proportionality constant to be calculated in $\S \S 3$ and 4 , which is not dependent on the Ω. Similarly $T_{i-1}{ }^{j} 0$ and $T_{i-2}{ }_{0}^{j} 0$ are in the same interval, for all j with $j<F_{i-1}$. Adding equation (9) to itself, at one lower i value, then yields

$$
\begin{equation*}
T_{i 0}^{j} 0-T_{i-2}{ }_{0}^{j} 0=B(j)\left[\Omega_{i}-\Omega_{i-2}\right] \tag{10}
\end{equation*}
$$

for $j \leqslant F_{i-1}$. Assuming equation (7) holds at $k=i-1$ and $i-2$, I derive a recursion relation for the Ω (8) such that (7) also holds at $k=i$. For $k=i$, equation (7) can be written as

$$
\begin{equation*}
T_{i}{ }_{i}^{F_{i+1} 0} 0=T_{i}{ }^{F_{t-1}} T_{i} T_{i}^{F_{0} 0}=F_{i} \tag{11}
\end{equation*}
$$

since $F_{i+1} \equiv F_{i}+F_{i-1}$. Combining (9) and (7) at $k=i-1$ yields

$$
\begin{equation*}
T_{i}{ }_{i}{ }_{0} 0=B\left(F_{i}\right)\left[\Omega_{i}-\Omega_{i-1}\right]+F_{i-1} \equiv \Phi_{i}+F_{i-1} \tag{12}
\end{equation*}
$$

where I define a new quantity Φ_{i}.
As a result the second term of (11) becomes

$$
\begin{equation*}
T_{i}^{F_{i-1}}{ }_{0} T_{i}^{F_{0} 0} 0=T_{i}^{F_{i-1}}\left(\Phi_{i}+F_{i-1}\right)=T_{i}^{F_{i-1}}{ }_{0} \Phi_{i}+F_{i-1} \tag{13}
\end{equation*}
$$

due to the modulo counting in $D(\theta)$, of (2). Later in this section I prove that Φ_{i} is so small that $T_{i}{ }_{0} \Phi_{i}$ will be in the same unit interval as $T_{i}{ }_{0} 0$, and on the same side of the cusp in $D(\theta)$ (2), for all j with $j<F_{i-1}$. Hence

$$
\begin{equation*}
T_{i}^{F_{\mathrm{t}-1}{ }_{0} \Phi_{i}=T_{i}^{F_{i-1}} 00+C\left(F_{i-1}\right) \Phi_{i} .} \tag{14}
\end{equation*}
$$

where $C\left(F_{i-1}\right)$ is the product of the slopes in figure 1 each time T has been applied. Substitution of (14) and (10), at $j=F_{i-1}$, into (13) finally yields

$$
\begin{equation*}
T_{i}^{F_{i-1}} T_{i}^{F_{0}} 0=B\left(F_{i-1}\right)\left(\Omega_{i}-\Omega_{i-2}\right)+C\left(F_{i-1}\right) \Phi_{i}+F_{i} \tag{15}
\end{equation*}
$$

Comparison with (11) shows that

$$
\begin{equation*}
B\left(F_{i-1}\right)\left(\Omega_{i}-\Omega_{i-2}\right)+C\left(F_{i-1}\right) B\left(F_{i}\right)\left(\Omega_{i}-\Omega_{i-1}\right)=0 \tag{16}
\end{equation*}
$$

using the Φ_{i} definition (12).
Introducing some new notation,

$$
\begin{equation*}
B_{i-1} \equiv B\left(F_{i}\right) \quad A_{i} \equiv \Omega_{i} B_{i} \tag{17}
\end{equation*}
$$

equation (16) can be written as

$$
\left[B_{i-2}+C\left(F_{i-1}\right) B_{i-1}\right] \Omega_{i}=A_{i-2}+C\left(F_{i-1}\right) A_{i-1}
$$

Hence I obtain for Ω_{i}

$$
\begin{equation*}
\Omega_{i}\left(=A_{i} / B_{i}\right)=\left[A_{i-2}+C\left(F_{i-1}\right) A_{i-1}\right] /\left[B_{i-2}+C\left(F_{i-1}\right) B_{i-1}\right] . \tag{18}
\end{equation*}
$$

This equation still has two unknowns: \boldsymbol{A}_{i} and B_{i}. From (9) a second equation can be derived which gives a recursion relation for B_{i}. Using (9) at various i and j values, and also using (7) and (14), it is straightforward to derive

$$
\begin{equation*}
B_{i}\left(\Omega_{i+1}-\Omega_{i}\right)=B_{i-2}\left(\Omega_{i+1}-\Omega_{i}\right)+C\left(F_{i-1}\right) B_{i-1}\left(\Omega_{i+1}-\Omega_{i}\right) \tag{19}
\end{equation*}
$$

and since

$$
\Omega_{i+1} \neq \Omega_{i}
$$

(19) can be written as

$$
\begin{equation*}
B_{i}=B_{i-2}+C\left(F_{i-1}\right) B_{i-1} \tag{20a}
\end{equation*}
$$

and, with (18), one finds

$$
\begin{equation*}
A_{i}=A_{i-2}+C\left(F_{i-1}\right) A_{i-1} \tag{20b}
\end{equation*}
$$

In $\S \S 3$ and 4 I calculate expressions for $\Omega_{i}(36)$ and (41) and δ_{i} (37) and (50) with the recursion relations (20).

Several technical proofs postponed from earlier in this section are provided now.
Result 1. $T_{i-1}{ }^{j} 0$ and $T_{i}^{j} 0$ are in the same unit interval $[n, n+1], n \in N$, with $j<F_{i+2}$.
Proof. It is proved by Kandanoff (1983) that the quantity

$$
\begin{equation*}
\Gamma_{P, Q}(\theta) \equiv\left[T_{i}^{Q}{ }_{0} \theta-P-\theta\right] /\left[Q W_{i}-P\right] \tag{21}
\end{equation*}
$$

is greater than zero for all $P, Q(\in N)$ and θ for which the denominator does not vanish, i.e. $P / Q \neq W_{i}$.

The main idea of this proof is that under these conditions the numerator cannot vanish either since all orbits of T_{i} have winding number W_{i}. The numerator would vanish only if $P / Q=F_{i} / F_{i+1}$, which was excluded. In addition, note that $\Gamma_{P, Q}(\theta)$ is periodic in θ and continuous. Hence it will be positive for all θ when it is positive for one θ. Also it is easily seen from (21) that $\Gamma_{N P, N Q}(\theta) \rightarrow 1$ if $N \rightarrow \infty$, due to $\lim _{N \rightarrow \infty}\left[\left(T_{i}{ }^{N Q} \theta\right) /\left(N Q W_{i}+\theta\right)\right]=1$. So $\Gamma_{P, Q}(\theta)$ will always be positive (Kadanoff 1983). Hence $T_{i}^{j}{ }_{0} 0$ is in the same interval as $j F_{i} / F_{i+1}$.

To show that $j F_{i} / F_{i+1}$ and $j F_{i-1} / F_{i}$ are in the same unit interval for $j<F_{i+2}$ I will look for the first time that this is not the case. (Here I assume i is even, proof for i odd is analogous.) I need the smallest integers n, j such that

$$
\begin{equation*}
j F_{i} / F_{i+1}<n<j F_{i-1} / F_{i} . \tag{22}
\end{equation*}
$$

This can be rewritten, using $F_{i-1} F_{i+1}=F_{i}^{2}+1$, as

$$
\begin{equation*}
0<n F_{i+1}-j F_{i}<j / F_{i} \tag{23}
\end{equation*}
$$

The second term is an integer. When it takes the value 1 , it can be rewritten, using $F_{i-1} F_{i+1}=F_{i}^{2}+1$, as $\left(n-F_{i-1}\right) F_{i+1}=\left(j-F_{i}\right) F_{i}$. Because the Fibonacci numbers have no non-trivial common factors this is only satisfied for $n=F_{i-1}+m F_{i}, j=F_{i}+m F_{i+1}$, where m is an integer. The smallest m for which (23) holds is $m=1$, so $n=F_{i+1}, j=F_{i+2}$.

When the second term in (23) takes the value two, it can be rewritten, using $F_{i-3} F_{i+1}=F_{i-2} F_{i}+2$, as $\left(n-F_{i-3}\right) F_{i+1}=\left(j-F_{i-2}\right) F_{i}$. For the same reason as above, this is only satisfied for $n=F_{i-3}+m F_{i}, j=F_{i-2}+m F_{i+1}$. Now as the smallest m for which (23) holds is $m=2$, this gives greater values for n and j than in the first case.

When the second term $\geqslant 3, j$ has to be greater than $3 F_{i}$ but this is greater than F_{i+2}. So $n=F_{i+1}$ and $j=F_{i+2}$ is the first occurrence.

Result 2. $T_{i}^{j} 0$ and $T_{i-1}{ }_{0}^{j} 0$ are on the same side of the cusp in $D(\theta)(2)$, for $j<F_{i+1}$.
Proof. First treat the critical case $K=1$.
With $j<F_{i+1}$, it is impossible that points $T_{i}{ }^{j} 0$ lie in the flat regions of figure $1(a)$ $(0 \leqslant \bar{\theta} \leqslant(a-1) / a)$, for if this happened, there would be a cycle of length j instead of F_{i+1} and another winding number would arise (Kadanoff 1983). So all points $T_{i}{ }_{0} 0$ lie in the regions $(a-1) / a<\bar{\theta}<1$.

In the subcritical K region ($0 \leqslant K<1$), I confine myself to a special value of K, $K=\kappa(6)$ to be determined later, such that

$$
\begin{equation*}
T_{\infty}{ }_{0}{ }_{0} \frac{1}{2}=1 \quad a=2 . \tag{24}
\end{equation*}
$$

The statement that has to be proved can now be written as: for all $j<F_{i+1}$, there is an n such that

$$
\begin{equation*}
n-\frac{1}{2} \leq T_{i}^{j} 0 \leq n+\frac{1}{2} \tag{25a}
\end{equation*}
$$

and

$$
\begin{equation*}
n-\frac{1}{2} \leqslant T_{i-1}{ }_{0}^{j} 0 \leqslant n+\frac{1}{2} . \tag{25b}
\end{equation*}
$$

As intermediate steps I need

$$
\begin{equation*}
n+T_{i}^{-1}{ }_{0} 0 \leqslant T_{i}^{j} 0 \leqslant n+1+T_{i}^{-1}{ }_{0} 0 \tag{25c}
\end{equation*}
$$

and

$$
\begin{equation*}
n+T_{i-1}{ }_{0}^{-1} 0 \leqslant T_{i-1}{ }_{0}^{j} 0 \leqslant n+1+T_{i-1}{ }_{0}^{-1} 0 . \tag{25d}
\end{equation*}
$$

The fact that there is an n, for all $j<F_{i+1}$, such that (25c) and (25d) both hold, follows from the fact that $T_{i}^{j+1}{ }_{0} 0$ and $T_{i-1}{ }^{j+1}{ }_{0} 0$ are in the same interval $[n, n+1]$ for $j<F_{i+2}-1$ (see result 1).

I will now prove the equivalence between (25b) and (25d) for i even; the proof for i odd and for the equivalence of (25a) and (25c) is analogous. For $i=$ even, $\Omega_{\infty}<\Omega_{i-1}$ (since $W_{\infty}<W_{i-1}$ and W is a monotonic function of Ω (Shenker 1982)), so $T_{i-1}{ }^{-1}{ }_{0}<-\frac{1}{2}$. For the equivalence to hold there should not be any points $T_{i-1}{ }_{0} 0$ in the regions not common to both (25b) and (25d); there should be no point $T_{i-1}{ }^{j} 0$ such that

$$
\begin{equation*}
n+T_{i-1}{ }^{-1} 0<T_{i-1}{ }_{0}^{j} 0<n-\frac{1}{2} . \tag{26}
\end{equation*}
$$

Applying T_{i-1} on all three terms and using (1) and (24) this is equivalent to

$$
\begin{equation*}
n<T_{i-1}{ }^{j+1}{ }_{0} 0<n+T_{i-10}-\frac{1}{2}=n+\Omega_{i-1}-\Omega_{\infty} \tag{27}
\end{equation*}
$$

So there is a forbidden interval for $T_{i-1}{ }^{j+1}{ }_{0} 0$. Now I will show that two points $\left.T_{i-1}{ }_{0}^{j} 0\right|_{\text {mod 1 }}$, that are nearest neighbours on the unit interval, will lie on different sides of the forbidden interval, so no point lies in it and the equivalence will be proven.

For $j=F_{i}-1,\left.T_{i-1}{ }^{j+1}{ }_{0} 0\right|_{\bmod 1}$ takes the value 0 , so it is on the left-hand border of the forbidden interval. The points $\left.T_{i-1}{ }^{j} 00\right|_{\text {mod } 1}$ fall on the unit interval in exactly the same order as the points $\left.j W_{i-1}\right|_{\bmod 1}$ (from (21), Kadanoff (1983)). On the unit interval the next point after $j=F_{i}-1$ will be the one from $j=F_{i-1}-1$, because

$$
\left.\left(F_{i-1}-1\right) W_{i-1}\right|_{\bmod 1}-\left.\left(F_{i}-1\right) W_{i-1}\right|_{\bmod 1}=1 / F_{i} .
$$

For $j=F_{i-1}-1,\left.T_{i-1}{ }^{j+1}{ }_{0} 0\right|_{\bmod 1}=\left.T_{i-1}{ }^{F_{i-1}}{ }_{0} 0\right|_{\bmod 1}=T_{i-1}{ }^{F_{i-1}} 00-T_{i-2}{ }^{F_{i-1}} 0$. The last equality follows from $\Omega_{i-1}>\Omega_{i-2}$, so the final term >0, and the final term is less than 1 from result 1. Now it has to be proved that

$$
\begin{equation*}
T_{i-1}{ }^{F_{i-1} 0} 0-T_{i-2}{ }^{F_{i-1}} 0>\Omega_{i-1}-\Omega_{\infty} \tag{28}
\end{equation*}
$$

for the point to lie to the right of the forbidden interval.
From the mapping (1) it is clear that

$$
\begin{equation*}
T_{i-1}{ }_{0}^{j} 0-T_{i-2}{ }_{0}^{j} 0 \geqslant \Omega_{i-1}-\Omega_{i-2} \tag{29}
\end{equation*}
$$

for all $j>0$, so also for $j=F_{i-1}$, and $\Omega_{i-1}-\Omega_{i-2}>\Omega_{i-1}-\Omega_{\infty}$. Hence (28) is satisfied.
So there always is an n for all j, such that ($25 b$) and ($25 d$) both hold. The same is true for (25a) and (25c). Furthermore, (25c) and (25d) are equivalent for $j<F_{i+1}$.

Result 3. The angle Φ_{i}, as defined in (12), is so small that $T_{i}{ }_{0} \Phi_{i}$ will be in the same interval as $T_{10}^{j} 0$, and on the same side of the cusp in $D(\theta)$, as long as $j<F_{i-1}$.

Proof. Results 1 and 2 state that $T_{i 0}^{j} 0$ and $T_{i-1}{ }_{0}^{j} 0$ are in the same interval and on the same side of the cusp for $j<F_{i+1}$. This holds also for $T_{i}{ }^{F_{i}+j} 00$ and $T_{i-1}{ }_{F_{+}+j} 0$ for $j<F_{i-1}$. $T_{i-1}{ }^{F}+{ }_{0}{ }_{0} 0$ can be written as $T_{i-1}{ }_{0} 0+F_{i-1}$. So $T_{i}{ }^{F}+{ }^{+}{ }_{0} 0-F_{i-1}$ and $T_{i-1}{ }_{0} 0$ are in the same interval and on the same side of the cusp for $j<F_{i-1}$, and so are $T_{i-1}{ }_{0} 0$ and $T_{i}{ }_{0} 0$. From (12) it follows that

$$
\begin{equation*}
T_{i}{ }^{F_{i}+j} 0-F_{i-1}=T_{i}^{j}{ }_{0} \Phi_{i} . \tag{30}
\end{equation*}
$$

This completes the proof.

3. Analytical expressions for $\boldsymbol{\Omega}_{i}$ and $\boldsymbol{\delta}_{i}$ for the critical case ($K=1$)

In this section the recursion relations for $\Omega_{i}(8)$ and the $\delta_{i}(5)$ are calculated at $K=1$. It is easy to calculate the first few Ω_{i} :
$i=0: T_{0}{ }_{0}{ }_{0} 0=\Omega_{0}=0$

$$
\begin{equation*}
\text { whence } \Omega_{0}=0 \tag{31a}
\end{equation*}
$$

$i=1: T_{1}{ }_{0} 0=\Omega_{1}=1$
whence $\Omega_{1}=1$
$i=2: T_{2}^{2}{ }_{0} 0=T_{2}{ }^{1} \Omega_{2}=(1+a) \Omega_{2}+1-a=1 \quad$ whence $\Omega_{2}=a /(a+1)$.
When i is even the subsequent Ω_{i} are found from the recursion relations (20) and (31). The only unknown quantity is $C\left(F_{i-1}\right)$, which is the product of the slopes in figure 1 each time T has been applied. The map T has been applied F_{i-1} times with slope a each time, cf figure $1(a)$ and (1) and (2). Therefore

$$
\begin{equation*}
C\left(F_{i-1}\right)=a^{F_{i-1}} . \tag{32}
\end{equation*}
$$

When i is odd equation (20) cannot be used. This is a result of the fact that Φ_{i}, as defined in (12), is larger than $(a-1) / a$, because Φ_{i} is greater than zero and it is
impossible for these points to lie in the flat regions, as discussed in § 2 . As a result, the $C\left(F_{i-1}\right)$ in equation (14) should be multiplied by $\Phi_{i}-(a-1) / a$ instead of Φ_{i}. This problem can be avoided by reordering (11):

$$
\begin{equation*}
T_{i}{ }^{F_{i+1}} 0=T_{i}{ }_{i}^{F_{0}} T_{i}{ }^{F_{i-1}} 0=F_{i} . \tag{33}
\end{equation*}
$$

The recursion relation, analogous to (20), but obtained with (33), is

$$
\begin{align*}
& A_{i}=A_{i-1}+C\left(F_{i}\right) A_{i-2} \tag{34a}\\
& B_{i}=B_{i-1}+C\left(F_{i}\right) B_{i-2} \tag{34b}
\end{align*}
$$

Since T has been applied F_{i} times and the slope is a each time

$$
\begin{equation*}
C\left(F_{i}\right)=a^{F_{i}} \tag{35}
\end{equation*}
$$

is the analogue of (32).
In the critical case the Ω_{i} can therefore be expressed as

$$
\begin{array}{lll}
\Omega_{i}=A_{i} / B_{i} & A_{0} & =0 \\
& A_{1}=1 & \\
A_{i}=a^{F_{\mathrm{t}-1}} A_{i-1}+A_{i-2} & i: \text { even } \\
& A_{i-1}+a^{F_{i}} A_{i-2} & i \text { : odd } \\
B_{0} & =1 & \\
B_{1} & =1 & \\
B_{i}=a^{F_{i-1} B_{i-1}+B_{i-2}} & i: \text { even } \\
& B_{i-1}+a^{F_{1}} B_{i-2} & i: \text { odd. } \tag{36b}
\end{array}
$$

Finally, having obtained these exact values for Ω_{i} it is easy to calculate $\delta_{i}(5)$:

$$
\begin{align*}
\delta_{i}= & -\left(a^{F_{1+2}}-1\right) /\left(a^{F_{i+2}}-a^{F_{i+1}}\right) & & i: \text { even } \\
& -\left(a^{F_{t+2}}-1\right) /\left(a^{F_{1}}-1\right) & & i: \text { odd. } \tag{37}
\end{align*}
$$

Hence, for $i \rightarrow \infty$

$$
\begin{array}{ll}
\lim _{i \rightarrow \infty} \delta_{i}=-1 & i: \text { even } \\
\lim _{i \rightarrow \infty} \delta_{i}=-\infty & i: \text { odd } \tag{38}
\end{array}
$$

4. Analytical expressions for Ω_{i} and δ_{i} in the subcritical case with $K=\boldsymbol{\kappa}(<1)$

In this section I calculate the Ω_{i} and δ_{i} at $K=\kappa(6)$ and $a=2$. As has already been pointed out in (24), I study the case where

$$
T_{\infty}{ }_{0}^{1}{ }_{0}^{\frac{1}{2}}=1 \quad a=2
$$

It appears later in this section that this condition is satisfied if and only if $K=\kappa$ where κ satisfies (6).

As in the critical case is it easy to calculate the first few Ω_{i} :
$\begin{array}{ll}i=0: T_{0}{ }_{0} 0=\Omega_{0}=0 & \text { whence } \Omega_{0}=0 \\ i=1: T_{1}{ }_{0}{ }_{0} 0=\Omega_{1}=1 & \text { whence } \Omega_{1}=1 \\ i=2: T_{2}{ }_{0} 0=(2+\kappa) \Omega_{2}-\kappa=1 & \text { whence } \Omega_{2}=(1+\kappa) /(2+\kappa) .\end{array}$
Again (20) can be used to calculate the Ω_{i}. The only problem is to calculate $C\left(F_{i-1}\right)$.
When T_{i} is applied F_{i-1} times to the starting point, $\theta=0$, the orbit has F_{i-3} points in the intervals $\left[n, n+\frac{1}{2}\right]$ and F_{i-2} points in the intervals $\left[n+\frac{1}{2}, n+1\right], n \in N$. This is a result of the uniform distribution of the points in the pure rotation case, and the ordering properties following from (21). The real starting point for the $T_{i}^{F_{i-1}}$ lies in the second interval when $\theta<0$ (i is even) and in the first interval when $\theta>0$ (i is odd), cf (12). The last (F_{i-1} th) point, which has no influence on $C\left(F_{i-1}\right)$, is in the first interval when i is even and in the second interval when i odd, as a result of the fact that $j F_{i} / F_{i+1}$ for $j=F_{i-1}$, equals $F_{i-1} F_{i} / F_{i+1}=F_{i-2}+(-1)^{i} / F_{i+1}$. This lies in the interval [$n, n+\frac{1}{2}$] if i is even, and in [$n+\frac{1}{2}, n+1$] if i is odd. As a result

$$
\begin{align*}
C\left(F_{i-1}\right)= & (1-\kappa)^{F_{\mathrm{t}-3}-1}(1+\kappa)^{F_{\mathrm{t}-2^{+1}}} & & i: \text { even } \\
& (1-\kappa)^{F_{\mathrm{t}-3}+1}(1+\kappa)^{F_{\mathrm{t}-2}-1} & & i \text { odd. } \tag{40}
\end{align*}
$$

In the subcritical case the Ω_{i} can therefore be expressed as

$$
\begin{array}{ll}
\Omega_{i}=A_{i} / B_{i} & A_{0}=0 \\
& A_{1}=1 \\
& A_{2}=1+\kappa \\
& A_{i}=A_{i-2}+(1-\kappa)^{F_{\mathrm{t}-3^{ \pm 1}}}(1+\kappa)^{F_{i-2} \pm-1} A_{i-1} \\
& B_{0}=1 \\
B_{1}=1 \\
B_{2}=2+\kappa \\
B_{i}=B_{i-2}+(1-\kappa)^{F_{\mathrm{t}-3^{ \pm 1}}}(1+\kappa)^{F_{\mathrm{t}-2} \pm-1} B_{i-1} \tag{41b}
\end{array}
$$

(i is odd: upper sign, i is even: lower sign).
One easily proves that the mapping has a winding number which is independent of the starting points (Kadanoff 1983). Therefore the distance between two θ points must remain finite. This distance is multiplied by $C\left(F_{i-1}\right)$ after F_{i-1} mappings. Hence, I require

$$
\begin{equation*}
\lim _{i \rightarrow \infty} C\left(F_{i-1}\right)=\lim _{i \rightarrow \infty}(1-\kappa)^{F_{\mathrm{i}-3^{ \pm 1}}}(1+\kappa)^{F_{\mathrm{t}-2^{ \pm-1}}}=L<\infty . \tag{42}
\end{equation*}
$$

This yields, taking the natural logarithm,

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left(F_{i-3} \pm 1\right) \ln (1-\kappa)=\lim _{i \rightarrow \infty}\left[\ln (L)-\left(F_{i-2} \pm-1\right) \ln (1+\kappa)\right] . \tag{43}
\end{equation*}
$$

When dividing both sides in (43) by $F_{i-3} \pm 1$ and taking $i \rightarrow \infty$, the first term on the right-hand side will vanish. Note that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left(F_{i-2} \pm-1\right) /\left(F_{i-3} \pm 1\right)=(1+\sqrt{ } 5) / 2 \tag{44}
\end{equation*}
$$

Thus, I find the value of κ from

$$
\begin{equation*}
\ln (1-\kappa) / \ln (1+\kappa)=-(1+\sqrt{ } 5) / 2 \tag{45}
\end{equation*}
$$

Finally, having obtained the exact results for Ω_{i}, it is easy to calculate $\delta_{i}(5)$:

$$
\begin{align*}
\delta_{i} & =\left[\Omega_{i-1}(\kappa)-\Omega_{i}(\kappa)\right] /\left[\Omega_{i}(\kappa)-\Omega_{i+1}(\kappa)\right] \\
& =\left[\left(A_{i-1} B_{i}-A_{i} B_{i-1}\right) B_{i+1}\right] /\left[\left(A_{i} B_{i+1}-A_{i+1} B_{i}\right) B_{i-1}\right] \\
& =-B_{i+1} / B_{i-1} \tag{46}
\end{align*}
$$

using (41) or (20).
Using the κ value (45)

$$
\begin{equation*}
\lim _{i \rightarrow \infty}(1-\kappa)^{F_{i-3} \pm 1}(1+\kappa)^{F_{i-2} \pm-1}=[(1-\kappa) /(1+\kappa)]^{ \pm 1} . \tag{47}
\end{equation*}
$$

Hence, from (41b), for $i \rightarrow \infty$:

$$
\begin{equation*}
i \rightarrow \infty: B_{i}=B_{i-2}+(1-\kappa)^{ \pm 1}(1+\kappa)^{ \pm-1} B_{i-1} . \tag{48}
\end{equation*}
$$

Thus

$$
\begin{equation*}
i \rightarrow \infty: B_{i} / B_{i-1}=(1-\kappa)^{ \pm 1}(1+\kappa)^{ \pm-1}(1+\sqrt{ } 5) / 2 . \tag{49}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\delta_{\infty}=\lim _{i \rightarrow \infty}-B_{i+1} / B_{i-1}=-(3+\sqrt{ } 5) / 2 . \tag{50}
\end{equation*}
$$

Acknowledgments

I would like to thank Robert Helleman for introducing me to the subject of circle maps and for his many suggestions for improvements in the text of this paper. I also had useful discussions with Barbara Mandl. Part of this study was supported by DOE under DE-AC03-77ERO1538.

References

Feigenbaum M, Kadanoff L and Shenker S 1982 Physica D 5 370-86
Kadanoff L P 1983 J. Stat. Phys. 34 57-73
Nauenberg M 1982 Phys. Lett. 92A 319-20
Niven I 1956 Irrational Numbers (Buffalo: Mathematical Association of America)
Ostlund S, Rand D, Sethna J and Siggia E 1983 Physica D 8 303-42
Shenker S J 1982 Physica D 5 405-11
Swinney H L and Gollub J P 1978 Phys. Today 31 no 8, 41-9

[^0]: \dagger Present address: Physics Board, University of California, Santa Cruz, CA 95064, USA.

