

Home

Search Collections Journals About Contact us My IOPscience

Analytic results for the scaling behaviour of a piecewise-linear map of the circle

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1986 J. Phys. A: Math. Gen. 19 2973 (http://iopscience.iop.org/0305-4470/19/15/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 19:22

Please note that terms and conditions apply.

# Analytic results for the scaling behaviour of a piecewise-linear map of the circle

Jacob Wilbrink<sup>†</sup>

Twente University of Technology, Center for Theoretical Physics, PO Box 217, 7500 AE Enschede, The Netherlands

Received 17 July 1985, in final form 11 February 1986

Abstract. For the piecewise-linear circle map  $\theta \to \theta'$ , with  $\theta' \equiv \theta + \Omega - K(\frac{1}{2} - |\theta(\mod 1) - \frac{1}{2}|)$  the parameter values  $\Omega_i$  at which a periodic orbit, starting at  $\theta = 0$  with winding number  $F_i/F_{i+1}$ , where  $F_i$  is the *i*th Fibonacci number, exists, are calculated analytically. These calculations are done at two K values, K = 1, the critical case, and at  $K = \kappa < 1$  (where  $\ln(1-\kappa)/\ln(1+\kappa) = -(1+\sqrt{5})/2$ ). At  $K = \kappa$  the usual scaling behaviour for a smooth subcritical map is found, i.e. the same  $\delta$  as Shenker found numerically. However, at K = 1 a different critical  $\delta$  value than is usually found numerically for smooth maps is calculated analytically for this piecewise-linear map.

### 1. Introduction

Recently much work has been done on smooth circle maps. It was mainly stimulated by the fact that in circle maps the transition from 'rotation-like' behaviour to 'chaotic' behaviour is an analogue (Feigenbaum *et al* 1982) of a particular route to chaos: quasi-periodic behaviour followed by broadband noise. This scenario is often observed in experiments (Swinney and Gollub 1978).

I study the piecewise-linear circle map  $\theta' = T_0 \theta$ , with

$$T: \theta' = \theta + \Omega - KD(\theta) \tag{1}$$

$$D(\theta) = \begin{cases} \bar{\theta} & 0 \le \bar{\theta} < (a-1)/a \\ (a-1)(1-\bar{\theta}) & (a-1)/a \le \bar{\theta} < 1 \end{cases}$$
(2)

$$a > 1$$
  $\bar{\theta} \equiv \theta \mod 1$   $0 \le \bar{\theta} < 1$ 

as plotted in figure 1. The cusp is located at  $\bar{\theta} = (a-1)/a$ . Note that  $T_0(\theta+1) = T_0\theta+1$ and  $T_0\theta|_{\text{mod }1}$  is a map on the circle. An orbit is a sequence of subsequent  $\theta$  values,  $\theta$ ,  $T_0\theta$ ,  $T_0^2\theta$ ,..., generated by the mapping.

This paper is confined to orbits starting at  $\theta = 0$ . The orbit has (rational) winding number  $\rho = F/G$  if

$$T^{G}_{0}0 = F.$$
 (3)

Actually I wish to find orbits with irrational winding number  $\rho$ , equal to the golden mean  $W_{\infty} \equiv (\sqrt{5}-1)/2$ , cf Shenker (1982). This is done by approximations with the

† Present address: Physics Board, University of California, Santa Cruz, CA 95064, USA.



Figure 1. The piecewise-linear mapping T, from (1), plotted as a function of  $\theta$ , at (a) K = 1.0 and (b) K < 1.0.  $\Omega$  is a parameter in equation (1).

rationals

$$W_i \equiv F_i / F_{i+1} \tag{4}$$

where  $F_i$  is the *i*th Fibonacci number ( $F_0 \equiv 0$ ,  $F_1 = 1$ ,  $F_{i+1} \equiv F_i + F_{i-1}$ ). These  $W_i$  yield the best rational approximants to  $W_{\infty}$  (Shenker 1982, Niven 1956). The main technical problem is to calculate the parameter values  $\Omega_i(K)$ , for (1), at which orbits with  $\rho = W_i$  exist.

A derived quantity of importance is the rate  $\delta$  at which the  $\Omega_i(K)$  converge, and its approximation

$$\delta_i(K) \equiv [\Omega_{i-1}(K) - \Omega_i(K)] / [\Omega_i(K) - \Omega_{i+1}(K)].$$
(5)

Shenker (1982) numerically calculated  $\delta_i$  and  $\Omega_i$  for two smooth circle maps. I obtain these quantities analytically for the piecewise-linear map (1) at two K values.

The circle maps studied here and in Shenker (1982) have a critical K value, K = 1, at which there is a transition to chaotic behaviour, similar to the transition to broadband noise in the scenario described above. In the subcritical case (K < 1) these analytical results agree with Shenker's (1982) numerical value,  $\delta = -2.6180...$ 

Ostlund et al (1983) point out that

$$\delta = -W_{\infty}^{-2}$$

for an analytic diffeomorphism; this also holds for this non-analytic map. In the critical case my analytical result is different from Shenker's result, apparently due to the existence of a finite region of slope 0 (see figure 1(a)).

In § 2 the method for recursively obtaining the  $\Omega_i(K)$  values is described. In §§ 3 and 4 the  $\Omega_i$  and  $\delta_i$  are calculated for K = 1 and  $K = \kappa$ , where  $\kappa$  is the solution of

$$\ln(1-\kappa)/\ln(1+\kappa) = -(1+\sqrt{5})/2.$$
(6)

#### 2. A recursive method to calculate $\Omega_i(K)$

The problem is to calculate the values  $\Omega_k$  such that

$$T_k^{F_{k+1}} 0 = F_k \tag{7}$$

where  $T_k$  denotes the map T (as defined in (1)) with the parameter value  $\Omega = \Omega_k$ .

I shall obtain a recursion relation for those  $\Omega_k$ ,

$$\Omega_k = \Omega_k(\Omega_{k-1}, \Omega_{k-2}). \tag{8}$$

Use will be made of the fact that  $T_{i\,0}^{j}0$  and  $T_{i-1\,0}^{j}0$  are both in the same unit interval, e.g. [n, n+1],  $n \in N$ , and on the same side of the cusp in  $D(\theta)$ , for all j with  $j < F_i$ . A proof follows later in this section.

From this result it follows that  $T_{i_0}^j 0$  and  $T_{i-1_0}^j 0$  are virtually the same; when  $j \le F_i$  they merely differ in their  $\Omega$  values. Hence

$$T_{i0}^{j} 0 - T_{i-10}^{j} 0 = B(j)(\Omega_{i} - \Omega_{i-1})$$
(9)

where B(j) is some proportionality constant to be calculated in §§ 3 and 4, which is not dependent on the  $\Omega$ . Similarly  $T_{i-1}{}^{j}_{0}0$  and  $T_{i-2}{}^{j}_{0}0$  are in the same interval, for all j with  $j < F_{i-1}$ . Adding equation (9) to itself, at one lower i value, then yields

$$T_{i0}^{j}0 - T_{i-20} = B(j)[\Omega_{i} - \Omega_{i-2}]$$
<sup>(10)</sup>

for  $j \leq F_{i-1}$ . Assuming equation (7) holds at k = i-1 and i-2, I derive a recursion relation for the  $\Omega$  (8) such that (7) also holds at k = i. For k = i, equation (7) can be written as

$$T_i^{F_{i+1}}_{i}0 = T_i^{F_{i-1}}_{i}T_i^{F_{i}}_{i}0 = F_i$$
(11)

since  $F_{i+1} \equiv F_i + F_{i-1}$ . Combining (9) and (7) at k = i-1 yields

$$T_i^{F_i} = B(F_i)[\Omega_i - \Omega_{i-1}] + F_{i-1} = \Phi_i + F_{i-1}$$
(12)

where I define a new quantity  $\Phi_i$ .

As a result the second term of (11) becomes

$$T_i^{F_{i-1}} T_i^{F_{i-1}} 0 = T_i^{F_{i-1}} (\Phi_i + F_{i-1}) = T_i^{F_{i-1}} \Phi_i + F_{i-1}$$
(13)

due to the modulo counting in  $D(\theta)$ , cf (2). Later in this section I prove that  $\Phi_i$  is so small that  $T_{i0}^j \Phi_i$  will be in the same unit interval as  $T_{i0}^j 0$ , and on the same side of the cusp in  $D(\theta)$  (2), for all j with  $j < F_{i-1}$ . Hence

$$T_i^{F_{i-1}}\Phi_i = T_i^{F_{i-1}}0 + C(F_{i-1})\Phi_i$$
(14)

where  $C(F_{i-1})$  is the product of the slopes in figure 1 each time T has been applied. Substitution of (14) and (10), at  $j = F_{i-1}$ , into (13) finally yields

$$T_{i}^{F_{i-1}} T_{i}^{F_{i-1}} 0 = B(F_{i-1})(\Omega_{i} - \Omega_{i-2}) + C(F_{i-1})\Phi_{i} + F_{i}.$$
(15)

Comparison with (11) shows that

$$B(F_{i-1})(\Omega_i - \Omega_{i-2}) + C(F_{i-1})B(F_i)(\Omega_i - \Omega_{i-1}) = 0$$
(16)

using the  $\Phi_i$  definition (12).

Introducing some new notation,

$$B_{i-1} \equiv B(F_i) \qquad A_i \equiv \Omega_i B_i \tag{17}$$

equation (16) can be written as

$$[B_{i-2} + C(F_{i-1})B_{i-1}]\Omega_i = A_{i-2} + C(F_{i-1})A_{i-1}$$

Hence I obtain for  $\Omega_i$ 

 $\Omega_i(=A_i/B_i) = [A_{i-2} + C(F_{i-1})A_{i-1}]/[B_{i-2} + C(F_{i-1})B_{i-1}].$ (18)

This equation still has two unknowns:  $A_i$  and  $B_i$ . From (9) a second equation can be derived which gives a recursion relation for  $B_i$ . Using (9) at various *i* and *j* values, and also using (7) and (14), it is straightforward to derive

$$B_{i}(\Omega_{i+1} - \Omega_{i}) = B_{i-2}(\Omega_{i+1} - \Omega_{i}) + C(F_{i-1})B_{i-1}(\Omega_{i+1} - \Omega_{i})$$
(19)

and since

$$\Omega_{i+1} \neq \Omega_i$$

(19) can be written as

$$B_i = B_{i-2} + C(F_{i-1})B_{i-1}$$
(20*a*)

and, with (18), one finds

$$A_i = A_{i-2} + C(F_{i-1})A_{i-1}.$$
(20b)

In §§ 3 and 4 I calculate expressions for  $\Omega_i$  (36) and (41) and  $\delta_i$  (37) and (50) with the recursion relations (20).

Several technical proofs postponed from earlier in this section are provided now.

Result 1.  $T_{i-1}^{j}_{0}0$  and  $T_{i0}^{j}$  are in the same unit interval [n, n+1],  $n \in N$ , with  $j < F_{i+2}$ .

Proof. It is proved by Kandanoff (1983) that the quantity

$$\Gamma_{P,Q}(\theta) \equiv [T_i^Q_0 \theta - P - \theta] / [QW_i - P]$$
<sup>(21)</sup>

is greater than zero for all P,  $Q(\in N)$  and  $\theta$  for which the denominator does not vanish, i.e.  $P/Q \neq W_i$ .

The main idea of this proof is that under these conditions the numerator cannot vanish either since all orbits of  $T_i$  have winding number  $W_i$ . The numerator would vanish only if  $P/Q = F_i/F_{i+1}$ , which was excluded. In addition, note that  $\Gamma_{P,Q}(\theta)$  is periodic in  $\theta$  and continuous. Hence it will be positive for all  $\theta$  when it is positive for one  $\theta$ . Also it is easily seen from (21) that  $\Gamma_{NP,NQ}(\theta) \rightarrow 1$  if  $N \rightarrow \infty$ , due to  $\lim_{N\to\infty} [(T_i^{NQ}_0\theta)/(NQW_i + \theta)] = 1$ . So  $\Gamma_{P,Q}(\theta)$  will always be positive (Kadanoff 1983). Hence  $T_i^{i_0}0$  is in the same interval as  $jF_i/F_{i+1}$ .

To show that  $jF_i/F_{i+1}$  and  $jF_{i-1}/F_i$  are in the same unit interval for  $j < F_{i+2}$  I will look for the first time that this is not the case. (Here I assume *i* is even, proof for *i* odd is analogous.) I need the smallest integers *n*, *j* such that

$$jF_i/F_{i+1} < n < jF_{i-1}/F_i.$$
<sup>(22)</sup>

This can be rewritten, using  $F_{i-1}F_{i+1} = F_i^2 + 1$ , as

$$0 < nF_{i+1} - jF_i < j/F_i.$$
<sup>(23)</sup>

The second term is an integer. When it takes the value 1, it can be rewritten, using  $F_{i-1}F_{i+1} = F_i^2 + 1$ , as  $(n - F_{i-1})F_{i+1} = (j - F_i)F_i$ . Because the Fibonacci numbers have no non-trivial common factors this is only satisfied for  $n = F_{i-1} + mF_i$ ,  $j = F_i + mF_{i+1}$ , where *m* is an integer. The smallest *m* for which (23) holds is m = 1, so  $n = F_{i+1}, j = F_{i+2}$ .

When the second term in (23) takes the value two, it can be rewritten, using  $F_{i-3}F_{i+1} = F_{i-2}F_i + 2$ , as  $(n - F_{i-3})F_{i+1} = (j - F_{i-2})F_i$ . For the same reason as above, this is only satisfied for  $n = F_{i-3} + mF_i$ ,  $j = F_{i-2} + mF_{i+1}$ . Now as the smallest *m* for which (23) holds is m = 2, this gives greater values for *n* and *j* than in the first case.

When the second term  $\ge 3$ , j has to be greater than  $3F_i$  but this is greater than  $F_{i+2}$ . So  $n = F_{i+1}$  and  $j = F_{i+2}$  is the first occurrence.

Result 2.  $T_{i0}^{j}$  and  $T_{i-10}^{j}$  are on the same side of the cusp in  $D(\theta)$  (2), for  $j < F_{i+1}$ .

*Proof.* First treat the critical case K = 1.

With  $j < F_{i+1}$ , it is impossible that points  $T_{i\,0}^{j}$  lie in the flat regions of figure 1(a) $(0 \le \overline{\theta} \le (a-1)/a)$ , for if this happened, there would be a cycle of length j instead of  $F_{i+1}$  and another winding number would arise (Kadanoff 1983). So all points  $T_{i\,0}^{j}$  lie in the regions  $(a-1)/a < \overline{\theta} < 1$ .

In the subcritical K region  $(0 \le K \le 1)$ , I confine myself to a special value of K,  $K = \kappa$  (6) to be determined later, such that

$$T_{\infty 0}^{-1} \frac{1}{2} = 1 \qquad a = 2. \tag{24}$$

The statement that has to be proved can now be written as: for all  $j < F_{i+1}$ , there is an *n* such that

$$n - \frac{1}{2} \le T_{i\ 0}^{j} 0 \le n + \frac{1}{2} \tag{25a}$$

and

$$n - \frac{1}{2} \le T_{i-1} {}_{0}^{j} 0 \le n + \frac{1}{2}.$$
(25b)

As intermediate steps I need

$$n + T_{i_{0}}^{-1} 0 \leq T_{i_{0}}^{j} 0 \leq n + 1 + T_{i_{0}}^{-1} 0$$
(25c)

and

$$n + T_{i-1}^{-1} 0 \leq T_{i-1}^{j} 0 \leq n+1 + T_{i-1}^{-1} 0.$$
(25d)

The fact that there is an *n*, for all  $j < F_{i+1}$ , such that (25*c*) and (25*d*) both hold, follows from the fact that  $T_i^{j+1} _{0}0$  and  $T_{i-1}^{j+1} _{0}0$  are in the same interval [n, n+1] for  $j < F_{i+2} - 1$  (see result 1).

I will now prove the equivalence between (25b) and (25d) for *i* even; the proof for *i* odd and for the equivalence of (25a) and (25c) is analogous. For *i* = even,  $\Omega_{\infty} < \Omega_{i-1}$  (since  $W_{\infty} < W_{i-1}$  and *W* is a monotonic function of  $\Omega$  (Shenker 1982)), so  $T_{i-1}^{-1} < -\frac{1}{2}$ . For the equivalence to hold there should not be any points  $T_{i-1}^{j} < 0$  in the regions not common to both (25b) and (25d); there should be no point  $T_{i-1}^{j} < 0$  such that

$$n + T_{i-1}^{-1} 0 < T_{i-1}^{j} 0 < n - \frac{1}{2}.$$
(26)

Applying  $T_{i-1}$  on all three terms and using (1) and (24) this is equivalent to

$$n < T_{i-1}^{j+1} = 0 < n + T_{i-10} - \frac{1}{2} = n + \Omega_{i-1} - \Omega_{\infty}.$$
(27)

So there is a forbidden interval for  $T_{i-1}^{j+1} = 0$ . Now I will show that two points  $T_{i-1}^{j} = 0 |_{\text{mod } 1}$ , that are nearest neighbours on the unit interval, will lie on different sides of the forbidden interval, so no point lies in it and the equivalence will be proven.

For  $j = F_i - 1$ ,  $T_{i-1}^{j+1} {}_0 0|_{mod 1}$  takes the value 0, so it is on the left-hand border of the forbidden interval. The points  $T_{i-1}{}_0 0|_{mod 1}$  fall on the unit interval in exactly the same order as the points  $jW_{i-1}|_{mod 1}$  (from (21), Kadanoff (1983)). On the unit interval the next point after  $j = F_i - 1$  will be the one from  $j = F_{i-1} - 1$ , because

$$(F_{i-1}-1)W_{i-1}|_{\text{mod }1}-(F_i-1)W_{i-1}|_{\text{mod }1}=1/F_i.$$

For  $j = F_{i-1} - 1$ ,  $T_{i-1}^{j+1} 0|_{mod 1} = T_{i-1}^{F_{i-1}} 0|_{mod 1} = T_{i-1}^{F_{i-1}} 0 - T_{i-2}^{F_{i-1}} 0$ . The last equality follows from  $\Omega_{i-1} > \Omega_{i-2}$ , so the final term >0, and the final term is less than 1 from result 1. Now it has to be proved that

$$T_{i-1}^{F_{i-1}} 0 - T_{i-2}^{F_{i-1}} 0 > \Omega_{i-1} - \Omega_{\infty}$$
<sup>(28)</sup>

for the point to lie to the right of the forbidden interval.

From the mapping (1) it is clear that

$$T_{i-1}{}_{0}^{j}0 - T_{i-2}{}_{0}^{j}0 \ge \Omega_{i-1} - \Omega_{i-2}$$
<sup>(29)</sup>

for all j > 0, so also for  $j = F_{i-1}$ , and  $\Omega_{i-1} - \Omega_{i-2} > \Omega_{i-1} - \Omega_{\infty}$ . Hence (28) is satisfied.

So there always is an *n* for all *j*, such that (25*b*) and (25*d*) both hold. The same is true for (25*a*) and (25*c*). Furthermore, (25*c*) and (25*d*) are equivalent for  $j < F_{i+1}$ .

*Result 3.* The angle  $\Phi_i$ , as defined in (12), is so small that  $T_{i0}^j \Phi_i$  will be in the same interval as  $T_{i0}^j 0$ , and on the same side of the cusp in  $D(\theta)$ , as long as  $j < F_{i-1}$ .

*Proof.* Results 1 and 2 state that  $T_{i\,0}^{j}0$  and  $T_{i-1}^{j}0$  are in the same interval and on the same side of the cusp for  $j < F_{i+1}$ . This holds also for  $T_i^{F_i+j}0$  and  $T_{i-1}^{F_i+j}0$  for  $j < F_{i-1}$ .  $T_{i-1}^{F_i+j}0$  can be written as  $T_{i-1}^{j}0 + F_{i-1}$ . So  $T_i^{F_i+j}0 - F_{i-1}$  and  $T_{i-1}^{j}0$  are in the same interval and on the same side of the cusp for  $j < F_{i-1}$ , and so are  $T_{i-1}^{j}0$  and  $T_{i0}^{j}0$ . From (12) it follows that

$$T_i^{F_i+j}{}_00 - F_{i-1} = T_i^{j}{}_0\Phi_i.$$
(30)

This completes the proof.

# 3. Analytical expressions for $\Omega_i$ and $\delta_i$ for the critical case (K = 1)

In this section the recursion relations for  $\Omega_i$  (8) and the  $\delta_i$  (5) are calculated at K = 1. It is easy to calculate the first few  $\Omega_i$ :

$$i = 0; T_0^{-1} = 0$$
 whence  $\Omega_0 = 0$  (31*a*)

$$i = 1; T_1^{-1} = 0 = \Omega_1 = 1$$
 whence  $\Omega_1 = 1$  (31*b*)

$$i = 2$$
:  $T_{2\ 0}^{\ 2} = T_{2\ 0}^{\ 2} = (1+a)\Omega_2 + 1 - a = 1$  whence  $\Omega_2 = a/(a+1)$ . (31c)

When *i* is even the subsequent  $\Omega_i$  are found from the recursion relations (20) and (31). The only unknown quantity is  $C(F_{i-1})$ , which is the product of the slopes in figure 1 each time *T* has been applied. The map *T* has been applied  $F_{i-1}$  times with slope *a* each time, cf figure 1(*a*) and (1) and (2). Therefore

$$C(F_{i-1}) = a^{F_{i-1}}.$$
(32)

When *i* is odd equation (20) cannot be used. This is a result of the fact that  $\Phi_i$ , as defined in (12), is larger than (a-1)/a, because  $\Phi_i$  is greater than zero and it is

impossible for these points to lie in the flat regions, as discussed in §2. As a result, the  $C(F_{i-1})$  in equation (14) should be multiplied by  $\Phi_i - (a-1)/a$  instead of  $\Phi_i$ . This problem can be avoided by reordering (11):

$$T_i^{F_{i+1}}_{i=0} 0 = T_i^{F_{i}}_{0} T_i^{F_{i-1}}_{i=0} 0 = F_i.$$
(33)

The recursion relation, analogous to (20), but obtained with (33), is

$$A_{i} = A_{i-1} + C(F_{i})A_{i-2}$$
(34*a*)

$$B_i = B_{i-1} + C(F_i)B_{i-2}.$$
 (34b)

Since T has been applied  $F_i$  times and the slope is a each time

$$C(F_i) = a^{F_i} \tag{35}$$

is the analogue of (32).

In the critical case the  $\Omega_i$  can therefore be expressed as

$$\Omega_{i} = A_{i} / B_{i} \qquad A_{0} = 0$$

$$A_{1} = 1$$

$$A_{i} = a^{F_{i-1}} A_{i-1} + A_{i-2} \qquad i: \text{ even}$$

$$A_{i-1} + a^{F_{i}} A_{i-2} \qquad i: \text{ odd} \qquad (36a)$$

$$B_{0} = 1$$

$$B_{1} = 1$$

$$B_{i} = a^{F_{i-1}} B_{i-1} + B_{i-2} \qquad i: \text{ even}$$

$$B_{i-1} + a^{F_i} B_{i-2}$$
 *i*: odd. (36*b*)

Finally, having obtained these exact values for  $\Omega_i$  it is easy to calculate  $\delta_i$  (5):

$$\delta_i = -(a^{F_{i+2}} - 1)/(a^{F_{i+2}} - a^{F_{i+1}}) \qquad i: \text{ even}$$
  
-(a^{F\_{i+2}} - 1)/(a^{F\_i} - 1) \qquad i: \text{ odd.} \qquad (37)

Hence, for  $i \rightarrow \infty$ 

$$\lim_{i \to \infty} \delta_i = -1 \qquad i: \text{ even}$$

$$\lim_{i \to \infty} \delta_i = -\infty \qquad i: \text{ odd.} \qquad (38)$$

# 4. Analytical expressions for $\Omega_i$ and $\delta_i$ in the subcritical case with $K = \kappa(<1)$

In this section I calculate the  $\Omega_i$  and  $\delta_i$  at  $K = \kappa(6)$  and a = 2. As has already been pointed out in (24), I study the case where

$$T_{\infty 0}^{1} \frac{1}{2} = 1$$
  $a = 2.$ 

It appears later in this section that this condition is satisfied if and only if  $K = \kappa$  where  $\kappa$  satisfies (6).

As in the critical case is it easy to calculate the first few  $\Omega_i$ :

$$i = 0: T_0^{1} = 0 = 0$$
 whence  $\Omega_0 = 0$  (39*a*)

$$i = 1: T_{1\ 0}^{1} = 0 = \Omega_1 = 1$$
 whence  $\Omega_1 = 1$  (39b)

$$i = 2: T_{2_0}^{2_0} 0 = (2+\kappa)\Omega_2 - \kappa = 1$$
 whence  $\Omega_2 = (1+\kappa)/(2+\kappa)$ . (39c)

Again (20) can be used to calculate the  $\Omega_i$ . The only problem is to calculate  $C(F_{i-1})$ .

When  $T_i$  is applied  $F_{i-1}$  times to the starting point,  $\theta = 0$ , the orbit has  $F_{i-3}$  points in the intervals  $[n, n+\frac{1}{2}]$  and  $F_{i-2}$  points in the intervals  $[n+\frac{1}{2}, n+1]$ ,  $n \in N$ . This is a result of the uniform distribution of the points in the pure rotation case, and the ordering properties following from (21). The real starting point for the  $T_i^{F_{i-1}}$  lies in the second interval when  $\theta < 0$  (*i* is even) and in the first interval when  $\theta > 0$  (*i* is odd), cf (12). The last  $(F_{i-1}$ th) point, which has no influence on  $C(F_{i-1})$ , is in the first interval when *i* is even and in the second interval when *i* odd, as a result of the fact that  $jF_i/F_{i+1}$  for  $j = F_{i-1}$ , equals  $F_{i-1}F_i/F_{i+1} = F_{i-2} + (-1)^i/F_{i+1}$ . This lies in the interval  $[n, n+\frac{1}{2}]$  if *i* is even, and in  $[n+\frac{1}{2}, n+1]$  if *i* is odd. As a result

$$C(F_{i-1}) = (1-\kappa)^{F_{i-3}-1}(1+\kappa)^{F_{i-2}+1} \qquad i: \text{ even}$$
  
(1-\kappa)^{F\_{i-3}+1}(1+\kappa)^{F\_{i-2}-1} \qquad i: \text{ odd.} \qquad (40)

In the subcritical case the  $\Omega_i$  can therefore be expressed as

$$\Omega_{i} = A_{i} / B_{i} \qquad A_{0} = 0$$

$$A_{1} = 1$$

$$A_{2} = 1 + \kappa$$

$$A_{i} = A_{i-2} + (1 - \kappa)^{F_{i-3} \pm 1} (1 + \kappa)^{F_{i-2} \pm -1} A_{i-1} \qquad (41a)$$

$$B_{0} = 1$$

$$B_{1} = 1$$

$$B_{2} = 2 + \kappa$$

$$B_{i} = B_{i-2} + (1 - \kappa)^{F_{i-3} \pm 1} (1 + \kappa)^{F_{i-2} \pm -1} B_{i-1} \qquad (41b)$$

(*i* is odd: upper sign, *i* is even: lower sign).

One easily proves that the mapping has a winding number which is independent of the starting points (Kadanoff 1983). Therefore the distance between two  $\theta$  points must remain finite. This distance is multiplied by  $C(F_{i-1})$  after  $F_{i-1}$  mappings. Hence, I require

$$\lim_{i \to \infty} C(F_{i-1}) = \lim_{i \to \infty} (1 - \kappa)^{F_{i-3} \pm 1} (1 + \kappa)^{F_{i-2} \pm -1} = L < \infty.$$
(42)

This yields, taking the natural logarithm,

$$\lim_{i \to \infty} (F_{i-3} \pm 1) \ln(1-\kappa) = \lim_{i \to \infty} [\ln(L) - (F_{i-2} \pm -1) \ln(1+\kappa)].$$
(43)

When dividing both sides in (43) by  $F_{i-3} \pm 1$  and taking  $i \rightarrow \infty$ , the first term on the right-hand side will vanish. Note that

$$\lim_{i \to \infty} (F_{i-2} \pm -1) / (F_{i-3} \pm 1) = (1 + \sqrt{5})/2.$$
(44)

Thus, I find the value of  $\kappa$  from

$$\ln(1-\kappa)/\ln(1+\kappa) = -(1+\sqrt{5})/2.$$
(45)

Finally, having obtained the exact results for  $\Omega_i$ , it is easy to calculate  $\delta_i$  (5):

$$\delta_{i} = [\Omega_{i-1}(\kappa) - \Omega_{i}(\kappa)] / [\Omega_{i}(\kappa) - \Omega_{i+1}(\kappa)]$$
  
= [(A<sub>i-1</sub>B<sub>i</sub> - A<sub>i</sub>B<sub>i-1</sub>)B<sub>i+1</sub>]/[(A<sub>i</sub>B<sub>i+1</sub> - A<sub>i+1</sub>B<sub>i</sub>)B<sub>i-1</sub>]  
= -B<sub>i+1</sub>/B<sub>i-1</sub> (46)

using (41) or (20).

Using the  $\kappa$  value (45)

$$\lim_{i \to \infty} (1 - \kappa)^{F_{i-3} \pm 1} (1 + \kappa)^{F_{i-2} \pm -1} = [(1 - \kappa)/(1 + \kappa)]^{\pm 1}.$$
(47)

Hence, from (41*b*), for  $i \rightarrow \infty$ :

$$i \to \infty; B_i = B_{i-2} + (1-\kappa)^{\pm 1} (1+\kappa)^{\pm -1} B_{i-1}.$$
 (48)

Thus

$$i \to \infty$$
:  $B_i / B_{i-1} = (1 - \kappa)^{\pm 1} (1 + \kappa)^{\pm -1} (1 + \sqrt{5}) / 2.$  (49)

Finally,

$$\delta_{\infty} = \lim_{i \to \infty} -B_{i+1}/B_{i-1} = -(3+\sqrt{5})/2.$$
(50)

#### Acknowledgments

I would like to thank Robert Helleman for introducing me to the subject of circle maps and for his many suggestions for improvements in the text of this paper. I also had useful discussions with Barbara Mandl. Part of this study was supported by DOE under DE-AC03-77ERO1538.

## References

Feigenbaum M, Kadanoff L and Shenker S 1982 Physica D 5 370-86 Kadanoff L P 1983 J. Stat. Phys. 34 57-73 Nauenberg M 1982 Phys. Lett. 92A 319-20 Niven I 1956 Irrational Numbers (Buffalo: Mathematical Association of America) Ostlund S, Rand D, Sethna J and Siggia E 1983 Physica D 8 303-42 Shenker S J 1982 Physica D 5 405-11 Swinney H L and Gollub J P 1978 Phys. Today 31 no 8, 41-9